S-ROCK: Chebyshev Methods for Stiff Stochastic Differential Equations
نویسندگان
چکیده
We present and analyze a new class of numerical methods for the solution of stiff stochastic differential equations (SDEs). These methods, called S-ROCK (for stochastic orthogonal Runge–Kutta Chebyshev), are explicit and of strong order 1 and possess large stability domains in the mean-square sense. For mean-square stable stiff SDEs, they are much more efficient than the standard explicit methods proposed so far for stochastic problems and give significant speed improvement. The explicitness of the S-ROCK methods allows one to handle large systems without linear algebra problems usually encountered with implicit methods. Numerical results and comparisons with existing methods are reported.
منابع مشابه
Chebyshev Methods with Discrete Noise: the Τ-rock Methods
Stabilized or Chebyshev explicit methods have been widely used in the past to solve stiff ordinary differential equations. Making use of special properties of Chebyshev-like polynomials, these methods have favorable stability properties compared to standard explicit methods while remaining explicit. A new class of such methods, called ROCK, introduced in [Numer. Math., 90, 1-18, 2001] has recen...
متن کاملWeak second order S-ROCK methods for Stratonovich stochastic differential equations
It is well known that the numerical solution of stiff stochastic ordinary differential equations leads to a step size reduction when explicit methods are used. This has led to a plethora of implicit or semi-implicit methods with a wide variety of stability properties. However, for stiff stochastic problems in which the eigenvalues of a drift term lie near the negative real axis, such as those a...
متن کاملS-rock Methods for Stiff Itô Sdes
In this paper, we present a class of explicit numerical methods for stiff Itô stochastic differential equations (SDEs). These methods are as simple to program and to use as the well-known Euler-Maruyama method, but much more efficient for stiff SDEs. For such problems, it is well known that standard explicit methods face step-size reduction. While semi-implicit methods can avoid these problems ...
متن کاملStabilized Numerical Methods for Stochastic Differential Equations driven by Diffusion and Jump-Diffusion Processes
Stochastic models that account for sudden, unforeseeable events play a crucial role in many different fields such as finance, economics, biology, chemistry, physics and so on. That kind of stochastic problems can be modeled by stochastic differential equations driven by jumpdiffusion processes. In addition, there are situations, where a stochastic model is based on stochastic differential equat...
متن کاملExplicit methods for stiff stochastic differential equations
Multiscale differential equations arise in the modeling of many important problems in the science and engineering. Numerical solvers for such problems have been extensively studied in the deterministic case. Here, we discuss numerical methods for (mean-square stable) stiff stochastic differential equations. Standard explicit methods, as for example the EulerMaruyama method, face severe stepsize...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 30 شماره
صفحات -
تاریخ انتشار 2008